Necessary and Sufficient Conditions for the Self-normalized Central Limit Theorem

Qi-Man Shao

The Chinese University of Hong Kong

qmshao@sta.cuhk.edu.hk

The research is partially supported by Hong Kong RGC GRF 14302515 and 14304917

・ロト ・四ト ・ヨト ・ヨト ・ヨー

1. Introduction

▶ 1.1 Classical Central Limit Theorem

Let $\{X_i, 1 \le i \le n\}$ be a sequence of independent random variables. Put

$$S_n = \sum_{i=1}^n X_i.$$

What is the necessary and sufficient condition for the central limit theorem (CLT)?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1. Introduction

▶ 1.1 Classical Central Limit Theorem

Let $\{X_i, 1 \le i \le n\}$ be a sequence of independent random variables. Put

$$S_n = \sum_{i=1}^n X_i.$$

What is the necessary and sufficient condition for the central limit theorem (CLT)?

Under what conditions, are there a_n and c_n such that

$$\frac{S_n-c_n}{a_n} \xrightarrow{d} N(0,1) ?$$

► { X_i } are independent and identically distributed (i.i.d.) random variables with $E(X_1) = 0$

The following statements are equivalent

- CLT holds
- EX₁²I{|X₁| ≤ x} is a slowly varying function, i.e., X₁ is in the domain of attraction of the normal distribution, denoted by X₁ ∈ DAN.

► { X_i } are independent and identically distributed (i.i.d.) random variables with $E(X_1) = 0$

The following statements are equivalent

- CLT holds
- EX₁²I{|X₁| ≤ x} is a slowly varying function, i.e., X₁ is in the domain of attraction of the normal distribution, denoted by X₁ ∈ DAN.

Function f(x) is called slowly varying if $\forall t > 0$

$$\frac{f(tx)}{f(x)} \to 1 \text{ as } x \to \infty.$$

► { X_i } are independent and identically distributed (i.i.d.) random variables with $E(X_1) = 0$

The following statements are equivalent

- CLT holds
- EX₁²I{|X₁| ≤ x} is a slowly varying function, i.e., X₁ is in the domain of attraction of the normal distribution, denoted by X₁ ∈ DAN.

Function f(x) is called slowly varying if $\forall t > 0$

$$\frac{f(tx)}{f(x)} \to 1 \text{ as } x \to \infty.$$

• $\max_{1 \le i \le n} |X_i| / V_n \to 0$ in probability, where $V_n^2 = \sum_{i=1}^n X_i^2$

► Independent Random Variables

Assume that

$$\forall \varepsilon > 0, \max_{1 \le i \le n} P(|X_i| \ge \varepsilon a_n) \to 0.$$

Then

$$S_n/a_n \xrightarrow{d.} N(0,1)$$

if and only if

(i)
$$\sum_{i=1}^{n} P(|X_i| \ge \varepsilon a_n) \to 0$$
 for any $\varepsilon > 0$;
(ii) $\frac{1}{a_n} \sum_{i=1}^{n} EX_i I_{\{|X_i| \le a_n\}} \to 0$;
(iii) $\frac{1}{a_n^2} \sum_{i=1}^{n} (EX_i^2 I_{\{|X_i| \le a_n\}} - (EX_i I_{\{|X_i| \le a_n\}})^2) \to 1$

▶ 1.2. Self-normalized central limit theorem for i.i.d. random variables

Let $\{X_i, 1 \le i \le n\}$ be independent and identically distributed random variables. Put

$$S_n = \sum_{i=1}^n X_i$$
 and $V_n^2 = \sum_{i=1}^n X_i^2$.

• Self-normalized sum: S_n/V_n

Under what conditions, does the CLT hold for the self-normalized sum?

Assume $E(X_1) = 0$.

Logan, Mallows, Rice and Shepp (1973)'s conjecture:

∃ >

 $S_n/V_n \xrightarrow{d} N(0,1)$ if and only if $X_1 \in DAN$.

Assume $E(X_1) = 0$.

Logan, Mallows, Rice and Shepp (1973)'s conjecture:

 $S_n/V_n \xrightarrow{d} N(0,1)$ if and only if $X_1 \in DAN$.

• Maller (1981):

If $X_1 \in DAN$, then $S_n/V_n \xrightarrow{d} N(0, 1)$

• Griffin and Mason (1991):

Assume that X_1 is symmetric. Then CLT holds for S_n/V_n if and only if $X_1 \in DAN$

Assume $E(X_1) = 0$.

Logan, Mallows, Rice and Shepp (1973)'s conjecture:

 $S_n/V_n \xrightarrow{d} N(0,1)$ if and only if $X_1 \in DAN$.

• Maller (1981):

If $X_1 \in DAN$, then $S_n/V_n \xrightarrow{d} N(0, 1)$

• Griffin and Mason (1991):

Assume that X_1 is symmetric. Then CLT holds for S_n/V_n if and only if $X_1 \in DAN$

• Gine, Götze and Mason (1997): CLT holds for S_n/V_n if and only if $X_1 \in DAN$ Let $\{X_i, 1 \le i \le n\}$ be independent random variables with $E(X_i) = 0$. Set

$$S_n = \sum_{i=1}^n X_i$$
 and $V_n^2 = \sum_{i=1}^n X_i^2$

Aim: Find the necessary and sufficient condition for the self-normalized CLT, i.e.,

$$S_n/V_n \xrightarrow{d.} N(0,1)$$

(ロト 《聞 とく思 とく思 とうのぐの

Recall the classical Lindeberg CLT:

If the Lindeberg condition is satisfied

$$orall \varepsilon > 0, \ \sum_{i=1}^n E(X_i^2/B_n^2)I_{\{|X_i| > \varepsilon B_n\}} \to 0,$$

where $B_n^2 = \sum_{i=1}^n EX_i^2$, then

$$S_n/B_n \xrightarrow{d.} N(0,1)$$

Also recall the self-normalized CLT for i.i.d. random variables:

$$S_n/V_n \xrightarrow{d.} N(0,1)$$

if and only if $\max_{1 \le i \le n} |X_i| / V_n \to 0$ in probability, which is equivalent to

$$orall \varepsilon > 0, \ \sum_{i=1}^n E(X_i^2/V_n^2) I_{\{|X_i| > \varepsilon V_n\}} o 0,$$

which looks like a Lindeberg condition.

• Egorov (1996):

Let $X_i, i \ge 1$ be independent and symmetric random variables. Then

$$S_n/V_n \xrightarrow{d.} N(0,1)$$

if and only if $\max_{1 \le i \le n} |X_i| / V_n \to 0$ in probability.

• Egorov (1996):

Let X_i , $i \ge 1$ be independent and symmetric random variables. Then

$$S_n/V_n \xrightarrow{d.} N(0,1)$$

if and only if $\max_{1 \le i \le n} |X_i| / V_n \to 0$ in probability.

Question: Is max_{1≤i≤n} |X_i|/V_n → 0 in probability a sufficient condition in general?

• Egorov (1996):

Let X_i , $i \ge 1$ be independent and symmetric random variables. Then

$$S_n/V_n \xrightarrow{d.} N(0,1)$$

伺 と く ヨ と く ヨ と …

if and only if $\max_{1 \le i \le n} |X_i| / V_n \to 0$ in probability.

Question: Is max_{1≤i≤n} |X_i|/V_n → 0 in probability a sufficient condition in general?

Answer: No.

Example 1:

Let X_i , $i \ge 1$ be independent random variables satisfying

$$P(X_{2i-1} = -i^2) = \frac{1}{1+i^2}, \ P(X_{2i-1} = 1) = \frac{i^2}{1+i^2}$$
$$P(X_{2i} = i^2) = \frac{1}{1+i^2}, \ P(X_{2i} = -1) = \frac{i^2}{1+i^2}$$

for $i = 1, 2, \cdots$. Then $E(X_i) = 0$ and $\max_{1 \le i \le n} |X_i|/V_n \to 0$ in probability, but $S_n/V_n \to 0$ in probability.

Theorem (1)

Let $\{X_n, n \ge 1\}$ be independent non-degenerate random variables. Then

$$S_n/V_n \xrightarrow{d.} N(0,1)$$

if the following conditions are satisfied.

(i)
$$\max_{1 \le i \le n} |X_i| / V_n \to 0 \text{ in probability;}$$

(ii)
$$\sum_{i=1}^n \{E(X_i / V_n)\}^2 \to 0;$$

(iii)
$$E\left(\frac{S_n}{\max(V_n, a_n)}\right) \to 0, \text{ where } a_n \text{ satisfies}$$

$$\sum_{i=1}^n E\left(\frac{X_i^2}{a_n^2 + X_i^2}\right) = 1.$$
(1)

• Remark: Theorem remains valid if (iii) is replaced by

$$(iii)^* \quad E(S_n/V_n) \to 0.$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQC

• Remark: Theorem remains valid if (iii) is replaced by

$$(iii)^* \quad E(S_n/V_n) \to 0.$$

However, $(iii)^*$ is not a necessary condition.

• Example 2.

Let $Y_i := Y_{n,i}, 1 \le i \le n$ be i.i.d. with pdf

$$P(Y_i = 1/n) = 1 - \frac{\ln n}{4n}, \ P(Y_i = 1) = P(Y_i = -1) = \frac{\ln n}{8n}.$$

Define $X_i = Y_i - E(Y_i)$. Then we have

$$S_n/V_n \xrightarrow{d.} N(0,1)$$

but

$$E(S_n/V_n) \to \infty$$

(ロト 《聞 とくき とくき とうやくぐ

Theorem (2)

If (i) is satisfied, then (ii) and (iii) are necessary for the self-normalized CLT.

ヘロト 人間 とくほとくほとう

æ

Theorem (2)

If (i) is satisfied, then (ii) and (iii) are necessary for the self-normalized CLT.

Conjecture: Conditions (i), (ii) and (iii) are necessary and sufficient for the self-normalized CLT.

A key step of the proof is the following results:

Proposition (1)

Let $\{X_n, n \ge 1\}$ be independent non-degenerate random variables satisfying

 $\max_{i \leq n} |X_i| / V_n \to 0 \text{ in probability}$

Let $a_n > 0$ satisfy

$$\sum_{i=1}^{n} E\left(\frac{X_i^2}{a_n^2 + X_i^2}\right) = 1$$

Then

 $V_n/a_n \rightarrow 1$ in probability

□▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ ○

Proposition (2)

Assume that

$$\max_{1 \le i \le n} |X_i| / V_n \to 0 \text{ in probability}$$

and let
$$a_n > 0$$
 satisfy $\sum_{i=1}^n E\left(\frac{X_i^2}{a_n^2 + X_i^2}\right) = 1$. Then

$$\sum_{i=1}^{n} \left\{ E(X_i/V_n) \right\}^2 \to 0 \text{ is equivalent to}$$

$$\frac{1}{a_n^2} \sum_{i=1}^n (EX_i I_{\{|X_i| \le a_n\}})^2 \to 0$$

and
$$E\left(\frac{S_n}{\max(V_n, a_n)}\right) \to 0$$
 is equivalent to

$$\frac{1}{a_n}\sum_{i=1}^n EX_iI_{\{|X_i|\leq a_n\}}\to 0.$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへ⊙